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Abstract—Transistors have been fabricated with a photoresist high-voltage transistors require less halo dose; transistors oper-
mask placed in close proximity to the gate so as to effectively block ating in an analog fashion also require little or no halo dose.
the angled halo implant from the gate region. Devices for which the It is a relatively simple matter to provide a multiplicity of

halo has been eliminated demonstrate superior drain conductance, . . .
while devices with the halo implant show the short-channel effect masking levels and_lr_nplan_ts to accomplish all these goals on
required for high performance. Asymmetric devices have also been the same wafer, butitis obviously advantageous to be able to ac-
fabricated in a similar manner, producing devices with improved complish them simultaneously with the same masking step and
analog characteristics without an additional masking layer. implant sequence. In this paper, we describe such a method and

Index Terms—Analog integrated circuits, CMOSFETS. show data on symmetric halo and haloless devices, and also de-
vices built with a halo on one side and not the other. All of these
devices were fabricated with noncritical mask alignment by uti-
lizing the shadow-mask technique described in the following.

HE HALO or pocket implant is a key aspect to control- By blocking the halo implant, an improvement in transistor
ling the threshold voltage in short-channel transistors [1delf gain gm/gds) of as much as a factor of ten is demonstrated,
An implant of the same type as the well doping is done aftahd undesirable threshold voltage rollup was completely elimi-
the formation of the gate conductor and generally at the samgted.
time as the extension or lightly doped drain (LDD) implant. Be-
cause the implant is blocked from the channel region by the gate
polysilicon, the average doping concentration under the gate in-
creases as the channel length gets shorter thereby mitigating th&s mentioned earlier, it is not uncommon that the halo im-
short-channel threshold roll-off. Often the halo implant is dongant is performed at an angle with respect to the wafer normal.
at an angle with respect to wafer; this can aid in placing théhe angle can help to place the halo implant where desired: be-
implant under the gate and not under the source/drain implatteen the source and the drain and not below the drain. This
where it increases the junction capacitance. There are import@rgchematically illustrated in Fig. 1, where the extension, halo,
limitations to the use of the halo. The halo causes an increasel source/drain contours are indicated for representative steep-
in threshold voltage at shorter channels (sometimes knownaagl shallow-angle halo implants.
the reverse short channel effect [RSCE]) [2], particularly when If the halo implant is designed for a substantial angle from the
measured at low drain bias. This can reduce the current drivermal, then the standard mask in place at that time can be used
for all but the shortest devices. In general, more highly scaléalshadow the halo implant from a particular gate. The placement
transistors (i.e., lower power supply, shorter channels, thinrafithe mask has wide latitude, as the thickness of the photoresist
gate oxide) tend to have higher halo doses than higher voltagel the angle of the implant determines the length of the shadow.
transistors. The large electric field associated with high haldg. 2 shows the mannerinwhich the angled halo implantis shad-
doping is unacceptable for operation at high voltage becauseed by the resist. For a typical process in which the halo and
of hot-carrier concerns and premature breakdown. Finally, tegtension implants are done with the same mask, there are two
halo is disadvantageous for devices operated as a linear awrstraints on the location of the mask edge relative to the gate.
plifier inasmuch as the output conductance is degraded for ddre minimum distance that the gate may be from the edge of the
vices with a halo implant [3]-[5]. Therefore, it is desirable toesist is determined by the requirement that adequate extension
be able to provide devices with varying amounts of halo dogaplant be implanted to link up under the spacer with the deep
on the same wafer: short-channel transistors with large draiource/drain implant. The maximum distance that the resist may
bias need a large halo dose to control the short-channel effdm;from the gate is the thickness of the resist multiplied by the tan-
gent of the implant angle with respect to the normél tan(¢)

Manuscript received February 27, 2002; revised May 28, 2002. The reviéul Fig. 2. Atypical resist thickness of about Q. and an im-
of this paper was arranged by Editor R. Shrivastava. plantangle of 45allows approximately 0.4m of alignmentand
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Of course, the angled implants are performed four times, once
for each orientation. The shadowed device receives three of the
four rotations, but the most relevant implant is blocked. The
data in this paper show that only the implant protruding under
the gate plays an important role in determining the electrical
characteristics.

Forthese experiments, a set of test structures were designed to
simultaneously create four types of devices: thin oxide devices
with halo implants, thick oxide devices with the same halo im-
plants, thick oxide devices with the halo implants blocked by
the shadow technique, and asymmetric devices with one side
blocked and the other side with a halo.

Different channel lengths were provided for each device type
to fully characterize the effect.

I1l. EXPERIMENTAL RESULTS

The process used in these experiments was a ©&ni8-
shallow-trench isolated CMOS technology with copper met-
allurgy and two gate-oxide thicknesses. The thin gate-oxide
devices have oxide thickness of 2.9 nm, with polysilicon gate

Fig. 1. Schematic illustration of halo placement as a function ofimplant ang ngth of 135 nm intended for usage at 1.5 V. The devices with

Upper figure: halo implant angle normal to wafer surface. Lower figure: hal

implant at an angle with respect to the normal.
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Fig. 2. Schematic illustration of halo shadowing technique.
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.2-nm oxide have a polysilicon gate length of 240 nm and are
targeted for 2.5 V 10 applications. An adaptation of a standard
0.18+:m technology [6], both sets of devices have a relatively
high threshold voltage for reduced leakage and portable appli-
cations. Conventional bulk silicon wafers, dual workfunction
polysilicon, silicon nitride spacers, and self-aligned cobalt
silicide further define the important technology elements.

Extension and halo implants appropriate to the thin oxide
1.5 V devices were designed. For these devices adequate
threshold voltage is maintained down to the shortest allowed
channel length. The use of the same implants in the thick
oxide device, however, results in an excessively large threshold
voltage at the nominal channel length of this device. By
blocking the halo implant with the shadow mask, the target
threshold voltages at nominal channel length are achieved.
Figs. 4 and 5 show the threshold voltage as a function of channel
length for devices with and without the halo block image (for
nfet and pfet, respectively). The desired specifications for
channel length and threshold voltage for this application are
indicated in the figures. Further optimization of the devices
may be accomplished by providing a portion of the halo dose
at an angle of zero degrees (that will be implanted into both
devices) and a portion at a shallower angle (that will be blocked
by the shadow mask).

The transistor gain characteristics were also measured. A set
of 1,-V} curves for a representative shadowed and unshadowed
thick oxide device are shown in Fig. 6. The reduction in drain
conductance for the shadowed case is clearly evident. For
shorter channel devices, the drain-induced barrier lowering
(DIBL) effect dominates, and the drain conductance of the
shadowed device degrades rapidly. Additional data were taken
on a variety of design lengths so that the optimum channel
length could be determined. The transconductagee) (was
also measured aAl,,/AV, and the drain conductanceds)
asAlys/AVy. An operating point of 300 mV of gate overdrive
and a drain voltage of 2 V was chosen to characterize the gain.

Fig. 3. Schematic illustration of shadowed device with worst-case madihe device self gain was calculatedgs divided bygds. The

misalignment.

results of these measurements and calculations are shown in
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Figs. 7 and 8, for nFETs and pFETS, respectively. For channel 0103 1'0 100
lengths larger than 0,mm, the self gain of the shadowed device ) ' ’
is clearly superior, while the halo device is better for the shorter Design Length (um)

channel lengths. As described earlier, both types of devicgag. 10. Self gain as a function of channel length for shadowed, unshadowed,
are formed simultaneously simply by the addition of a nearwd asymmetric 5.2 nm PFETs. Symmetric devices are indicated by circles,
blocki . asymmetric with squares. Asymmetric devices were measured in both forward
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Itis also a simple matter to form an asymmetric device wit
the halo shadowed on only one side. We have characterized
the self gain of these asymmetric devices operated in bqgthint is still with gate voltage at 300 mV above threshold,
the forward and reverse mode. We define the forward mobet the drain voltage was 1 V. The data for nfet and pfet are
as the one in which the side with the halo blocked out represented in Figs. 9 and 10, respectively, superimposed upon
considered to be the drain side. For these plots the operatihg results for a fully shadowed and a completely unshadowed

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 8, 2009 at 13:40 from IEEE Xplore. Restrictions apply.



1626 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 9, SEPTEMBER 2002

TABLE |

Detailed optimization may be done by introducing a multi-
SELF GAIN FOR THIN-OXIDE DEVICES OFTWO DIFFERENT CHANNEL LENGTHS

plicity of halo implants, some blocked and others not. We also
note that the extension implant, or a portion thereof, can also be
adapted for this technique. In a manner analogous to the asym-
metric halo devices described above, it is generally desirable to
eliminate the LDD implant from the source side of a transistor,

set of devices. The asymmetric devices operated in reve\r’\égrégwh may be accomplished if the LDD implant is done at a

NFET
Forward Reverse
16.3 13.6
243.0 | 40.0

Channel Length PFET

Reverse
10.2
113.0

Forward
109
3470

0.18um
1.00 um

resemble the unshadowed devices; in both cases, there is af |c_|ent angI? Vl\"tth rﬁspect t(.) the ng_rlmal. tendible into th

situated at the drain side of the junction, which degrades the IS povx:jer ul tec nlq;]Je IIS rea (;y ex zn fl-f € into the

output conductance. For the asymmetric devices operated in thg3#M and 0.10xm technology nodes and offers superior

normal manner, with a halo implant only at the source side gtixed signal _capablllty with no additional process co_mplex_lty.

the device, the advantages become apparent. The asymmé@idully realize the advantages of the asymmetric device,

device with a relatively long 2:m channel length looks nearly the circuit and layout must distinguish the source from the

identical to the fully shadowed device, but the performance 8fain, which may require additional modeling and design

the shorter-channel device is clearly superior. These benefft§astructure.

are realized because there is no halo on the drain side to degrade
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